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Internal  Corre lat ion  in Repeated Games  I 

By E. Lehrer 2 

Abstract: This paper characterizes the set of all the Nash equilibrium payoffs in two player 
repeated games where the signal that the players get after each stage is either trivial (does not reveal 
any information) or standard (the signal is the pair of actions played). It turns out that if the infor- 
mation is not always trivial then the set of all the Nash equilibrium payoffs coincides with the set 
of the correlated equilibrium payoffs. In particular, any correlated equilibrium payoff of the one 
shot game is "also a Nash equilibrium payoff of the repeated game. 

For the proof we develop a scheme by which two players can generate any correlation device, 
using the signaling structure of the game. We present strategies with which the players internally 
correlate their actions without the need of an exogenous mediator. 

1 Introduction 

The well-known folk theorem (see [A2]) suggests that  the set of  all the Nash 
equi l ib r ium payoffs in infini te  und i scoun ted  repeated games coincides with the set 
of  all the feasible and  individual ly  rat ional  payoffs (FIR). Any  such payoff  can be 
sustained by a frequency strategy, in which the relative frequency of any payoff  tends 
to its weight in the convex combina t ion .  W h e n  one of  the players deviates, all other 
players punish  h im and  push his payoff  down to his individual ly  rat ional  level. For 
such a strategy to be properly carried out ,  it is necessary that  any deviat ion be detec- 
table. Tha t  is, the actions should be observable. Such an in fo rmat ion  structure is 
c o m m o n l y  called s tandard in fo rmat ion .  However, if the in fo rma t ion  is not  stan- 
dard, some deviat ions can go unnot iced .  Thus,  some points  in F I R  may not  be sus- 
ta inable  by equi l ibr ium.  The quest ion of  characterizing the set of  (upper) Nash 
equi l ibr ium payoffs in general und iscounted  repeated games with nons t anda rd  in- 
fo rmat ion  is still unanswered.  We provide here a character izat ion of  the Nash 
equi l ibr ium payoffs in a family of  games with nons t anda rd  in format ion .  It turns  
out  that  in this family of  games the sets of  Nash equi l ibr ium payoffs and  of cor- 
related equi l ibr ium payoffs are closely related. 
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The concept of correlated equilibrium, introduced by Aumann [A1 ], allows for 
an external mediator who provides the players with private information before the 
game starts. Usually, such an extension of a game (i.e., by adding and exogenous 
device) enlarges the set of equilibrium payoffs. 

In repeated games with standard information the set of the correlated 
equilibrium payoffs (CE) coincides with the set of the Nash equilibrium payoffs 
(NE). In other words, any equilibrium payoff supported by an external correlation 
device can be achieved as an equilibrium payoff even without an exogenous 
mediator. This is not surprising, though, because CE contains NE and the latter 
already contains all the feasible payoffs, which are individually rational. 

A game whose NE coincides with CE is called a saturated game. It is clear that 
any two player repeated game, not necessarily with standard information, for which 
NE coincides with FIR is a saturated game. However, in repeated games where the 
information is not standard NE is typically smaller than FIR, and CE is larger than 
NE. The question naturally arises: It is possible to find an information structure for 
which the respective repeated game (with any payoff matrix) is saturated and, 
moreover, the corresponding NE is typically smaller than FIR? 

In this paper we introduce a family of repeated games, called games with S - T  
(for standard-trivial) information. In these games the signal a player gets is either 
revealing the action combination played (standard) or completely concealing it 
(trivial). In symmetric S - T  games the signal is standard for one player if it is stan- 
dard for the other. The signal in symmetric S-T games can be conceived of also as 
a commonly observed signal which is either the action combination played or a null 
signal that does not reveal any information. 

We show that symmetric S-Tgames are saturated. Along with the characteriza- 
tion of CE in general repeated games with nonstandard information (see [L2]) this 
result provides also a characterization of NE in the case of symmetric S - T  games. 

Notice that unless the signal is standard, a player is not explicitly informed of 
his own payoff. The payoff is deposited in the player's bank account to which he 
has no access during the game. A vast majority of the literature devoted to repeated 
games with incomplete information or to repeated games with imperfect monitor- 
ing deals with models in which a few or all players are not explicitly informed of their 
own payoffs. For a state-of-the-art exposition of repeated games with and without 
complete information, the reader is referred to the forthcoming book of Mertens- 
Sorin-Zamir [MSZ]. 

This paper joins the growing body of papers dealing with repeated strategic in- 
teractions with imperfect monitoring. Radner [R], and, Rubinstein-Yaari [RY], have 
studied undiscounted repeated games with a one-sided moral hazard and two 
players a principal and an agent. The- agent is fully informed and the principal is 
partially informed of the agent's moves. Fudenberg-Maskin [FM], and Abreu- 
Pearce-Stachetti lAPS] have studied discounted games in which after each stage all 
of the players are informed of a common signal which depends (perhaps 
stochastically) on the action combination played. Fudenberg-Levine [FL] dealt with 
an n-player repeated game with observable payoffs. They defined a set of mutually 
punishable and enforceable payoffs (i.e., payoffs that are associated with joint ac- 
tions from which any profitable deviation is detectable) and showed that these 
payoffs are equilibrium payoffs of the repeated game. Some of the techniques 
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employed here and in the literature referred to resemble those used by Kohlberg [K]. 
In [K], Kohlberg studies zero-sum repeated games with both incomplete informa- 
tion and general information functions for the two players. 

The typical equilibrium payoff in undiscounted games with complete informa- 
tion has the following structure: first, it should be sustained by a combination of 
actions from which any profitable deviation is detectable and, second, it should be 
punishable. For instance, in the case of standard information, any feasible payoff 
is associated with a combination o f joint pure actions from which no one can deviate 
without being detected and, if it is individually rational, it is also punishable. This 
is the structure of equilibrium payoffs of some games with imperfect monitoring 
(i.e., nonstandard information) as well. The reader is referred to [LI], where the case 
of observable payoffs is treated to [L4], which deals with the lower Nash 
equilibrium, and to [L5] in which the semi-standard case is dealt with. The strategies 
sustaining such payoffs usually consist of two phases. The first one is the master 
plan in which the players play an action combination from which any profitable 
deviation is detectable. In the second phase, the punishment plan, players can com- 
municate among themselves in order to transmit information regarding previous 
deviations, and to punish the defector, if they find an alleged deviation. 

The main purpose of this paper is to present a new type of  strategy, one with 
a third phase - the correlation phase. In this phase the players generate by their own 
moves a correlation device to be used in the master phase. 

In games with S - T  information, payoffs sustainable by external correlation 
devices, are also Nash equilibrium payoffs. We prove that any external correlation 
can be substituted by an internal correlation which utilizes only the information 
structure of the game. By using it properly, the players can generate during the cor- 
relation phase any correlation matrix according to which they play in subsequent 
periods. 

The proof relies mainly on two previous results. The first one is a characteriza- 
tion of CE in repeated games with imperfect monitoring (see [L2]). The second 
result is that limits of  certain finitely repeated games payoffs (those associated with 
strategies from which any profitable deviation is detectable) are sustainable by 
equilibria in the infinitely repeated game (see [L3]). The method is to show that any 
correlated equilibrium payoff of the repeated games is a limit of such payoffs. 

The paper is built as follows. In Section 2 we give the general model of repeated 
games with symmetric S - T  information, and we present the notion of  saturated 
games. The third section is devoted to the analysis of  a specific example. In the 
fourth section we introduce the main theorem. The fifth section contains pertinent 
results from [L2], [L3] and [L5]. The sixth section considers the case where there 
is a player, all of  whose deviations are detectable. 

In the seventh section we demonstrate by an elaborate example how the infor- 
mation structure can be used to create any exogenous correlation. In other words, 
we demonstrate how any correlation matrix can be generated during the game. This 
section can be also regarded as a part of the preplay communication literature. 
Barany [B] and Forges [F] demonstrated the possibility of  designing a correlating 
procedure which ends up with a correlation distribution over the set of all the joint 
actions. In their discussion it is necessary to assume that there are at least four 
players, and in some particular examples even three players suffice. Here we exhibit 
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a correlation mechanism for two players which uses a special channel of com- 
munication. In this channel the players can send two signals, say, A and B. In turn, 
the players receive a signal only if both players sent B; otherwise the channel remains 
silent. 

For every correlation matrix with rational entries we exhibit a procedure that 
generates it and terminates with probability one. In case where the procedure can 
be repeated many times it turns out that this mechanism can be improved and 
become incentive compatible. 

The paper ends with Section 8, in which the proofs are given. The effort is 
devoted mainly to showing that the correlation procedure is not manipulable. 

2 The M o d e l  

a The One-Shot Game 

The repeated game is an infinite repetition of  a one-shot game, G, that consists of: 

(i) two finite sets of  actions, ~ 1 and ~2  �9 Denote ~ = E 1 • ~2 ;  
(ii) tWO payoff  functions h l ,h  2 ; h i : E -- IR. Denote h = (h l ,h2);  
(iii) two information functions fl ,e2 defined on E, and ranged to L1,L2, 

respectively. 

The repeated game is a symmetric S -T  3 information game if, for every (a, b) E E, 
either 

(a) el(a,  b) = / 2 ( a ,  b) = (a, b) ( in this case we will say that the information 
is standard); or 

(b) el(a,  b) = a and e2(a, b) = b (in this case we will say that the information 
is trivial). 

In words, either both players are informed of  the action combination just 
played or both are informed solely of  their own actions. In view of the Dalkey 
theorem [D], the requirement that  the players are informed of their own actions is 
superfluous. All the results below also hold if trivial information means a null 
signal. 

The domain of the functions l 1 and g2 can be extended to all the joint mixed 
actions." Let A(A) denote the set of  all the probability distributions on A. e i c a n  be 
extended in a natural way to A(Z 1 ) • A(E 2) SO as to attain values in A(L i )" Thus, 
el(p, q) is the probability distribution on L i induced by (p, q). 

3 for standard-trivial. 
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(i) Pure strategies. A pure strategy of player i is a sequence f = ( f l , f 2  .... ), 
where f t  : Lt:ll ~ ~ i �9 Lt:tl is the cartesian product of L i with itself t - 1 times and 

it consists of all player i 's possible histories of length t - 1. If f and g are two pure 
strategies of player 1 and 2, respectively, then x[ (f, g) will denote the payoff of 
player i at stage t when f and g are the strategies played. 

(ii) A mixed strategy is a probability distribution over the set of all the pure 
strategies of the repeated game. Let a i be a mixed strategy of player i. Denote by 
Eal,~2(x[ ) the expected payoff of player i at stage t where the expectation is taken 

with respect to the measure induced by (a 1,a2). 

c Upper Nash Equilibria of the Repeated Game 

Let a i be a mixed strategy of player i. H*(al,a2) is defined as the limit of the means 
of player i 's expected payoff. Precisely, H*(al,a2) = lim(1/T) ET=lEal,a2(xit ) if 

the limit exists. We will say that (a 1,a2) is an upper Nash equilibrium if H/*(a 1,a2), 
i -- 1,2, is defined and if for any other pair of mixed strategies, say, (~1,~2), 

(i) H~(al,a2) >- l imsuPr ( l /T)  ET_I E-6~,%(x ~ ), and 

(ii) H~(al,a2) >_ limsuPT (I/T) ~T=I Eal,-dz(x~)- 

Denote by UEP the set of all the payoffs H*(a 1,a2) = (Ht(a 1 ,a2), H~(a I ,a2)), 
where (al,a2) is an upper Nash equilibrium. 

Two more Nash equilibria concepts will be defined here. 

d Uniform Equilibrium 

a = (al,a2) is a uniform equilibrium if H*(a) is well defined, and if for any e > 0 
there is T such that for every t ___ T a induces an e-Nash equilibrium in the t-fold 
repeated game (see [S]). 

Denote the set of all uniform equilibrium payoffs by UNIE 
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e Banach Limit 

Let L be a Banach limit, a is an L-equilibrium if for every strategy of player 1, say, 
K1, the following holds: L({H~l(K 1,o2)}n ) _< L({Hn11(cr 1,crz)}n), and a similar require- 
ment for player 2. 

Denote all the L-equilibrium payoffs by BEP L. 

f Correlated Equilibrium in the Repeated Game 

In order to introduce the correlated equilibrium we have to add another element to 
the game: a mediator. Before starting the game a mediator picks, according to a 
known distribution a pair of signals (o~,/3). He informs player 1 of the outcome o~ 
and player 2 of/3. Relying on the private information they received from the 
mediator, the players choose a pure strategy to be played in the game. This correla- 
tion procedure is termed as a correlated equilibrium if neither player can increase 
his payoff (upper limit of the expected averages) by choosing differently (his pure 
strategies), as a function of his private information. 

Formally, a correlated equilibrium is a tuple (~1 x [22, g,f ,g) ,  where 
(ill x [~2, g) is a product probability space, f(resp., g) is a measurable function from 
~21 (resp., f~2) to the set of player l's (resp., player 2's) pure strategies, which satisfies 

lira (l/T) Ztrl E~,f,g(Xi) >_ limsuPT ( l /T)  ET=I El~,~,g(X~) ' 

(resp. the same inequality replacing x~ with x~, )" with f and g of the right side 

with g-) for any measurable function )" (reslS. g-). 
Denote by UCEP the set of all pairs of payoffs associated with correlated 

equilibria. Similarly to the definition of L-equilibrium, we can define L-correlated 
equilibrium and denote by CEP L the set of all payoffs associated with such 
equilibria. 

g Saturated Games 

If the Nash equilibrium payoffs set of a game F coincides with the set of the cor- 
related equilibrium payoffs of it, we say that P is saturated. 

Some examples and remarks. 

(i) Any zero sum game is saturated. 
(ii) The Nash equilibrium payoffs set of a saturated game is convex. 
(iii) Generically, any finite and saturated game has a unique Nash equilibrium 

payoff. 



(iv) 

(v) 
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Any game has an extension which is saturated. Namely, it is possible to add 
a random signal which takes place before the game starts, in such a way 
that the new game is saturated (see [F]). 
Any two player repeated game with observable payoffs is saturated. This 
is a corollary of two characterizations. The first a is characterization of 
the Nash equilibrium payoffs in repeated games with observable payoffs 
(see [L1]) and the second is a characterization of the correlated 
equilibrium payoffs in general repeated games with imperfect monitoring 
(see [L2]). 

3 E x a m p l e  

Before proceeding to the general results of the paper, we exemplify the way the inter- 
nal correlation works and a way to immunize against manipulations. The necessity 
of the latter is demonstrated by using the payoff matrix attached. All the relevant 
details about a repeated game with S-T information can be compressed into a 
bimatrix endowed with asterisks. An asterisk will stand for standard information. 
The following example is inspired by an example of Aumann [A1 ]. 

L M R 

0 , 0 "  

0 , 0  

0 . 0  

0 , 0  

6 . 6  

7 . 2  

I 
I o , 0  
I 

I 
I 2 , 7  
I 

I 
I o , o  
I 

The information that the players receive is standard only when the actions played 
are Tand L, otherwise the information is trivial. In other words, if player 1 played 
T and player 2 played L, both players are informed that (T,L) was played. On the 
other hand, if another action combination was played, then the players are informed 
solely of their own actions. 
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We will show that (5,5) can be sustained by an equilibrium. Notice that (5,5) 
is the payoff corresponding to the correlated equilibrium (of the one-shot game) 
which attaches probability 1/3 to each of the pairs (M,E), (M,B), (R,E). 

If  both players play (1/2, 1/2, 0) (i.e., player 1 and player 2 play T, E and L, M 
with probability one-half each, respectively), then the common distribution of their 
signals is given by: 

T* 

L* L M 

I 
1/4 o I 

I" 

0 0 

0 1 /4  

! / 4  

1/4  

Notice that given that * was not observed, the common distribution is given by 

L M 

o 1 /3  

i/3 i/3 

which is the normalized bottom-right sub-matrix of the above matrix. With pro- 
bability 3/4 the players end up with a correlation matrix which can give them both, 
according to the following description, the payoff 5. In order to assure the payoff 
(5,5) player 1 should play E for a long time if at the first stage he played E and he 
should play B if at the first stage he played T and did not observe *. Player 2 should 
play M for a long period of time for M and R for L (without an *). 

With probability 1/4 they will receive standard information after the first stage. 
It will be common knowledge, and in this case they can start the procedure from the 
beginning. Namely, they should play (1/2, 1/2, 0) and so on. However, this correla- 
tion procedure is not incentive compatible because both have an incentive to deviate. 
For instance, if player 1 instead of playing (1/2, 1/2, 0) plays (1,0,0), he affects the 
correlation matrix to his benefit. That is, if player 2 adheres to the above instruc- 
tions, the result is that with probability 1/2 the players play (T,L) (and observe *) 
and with probability 1/2 they play (T, M) which leads later to the actions (B, M). By 
that deviation player 1 increases his payoff from 5 to 7 (h(B,M) = (7,2)). 
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The procedure just described can be improved and thereby made into an 
equilibrium. Notice that by the deviation of  player 1 the probability of * has been 
increased from 1/4 to 1/2. Therefore, by replicating the same procedure many times 
and by performing a standard statistical test, player 2 can detect (with high pro- 
bability) any major deviation of  player 1. The more the procedure replicates, the 
higher the precision with which a player can detect an opponent 's  deviation. In this 
context of infinite horizon and no discount, the number of replications can be 
unlimited. Thus, the accuracy of  the statistical tests employed can become arbitrari- 
ly high. Therefore, the payoff (5,5) can be sustained by an exact equilibrium and not 
merely by an e-equilibrium. 

4 The  Main  T h e o r e m  

a Some Notations 

We will say that two actions a, b E E 1 are indistinguishable (we denote it by a 
b) if for any c E E2, e2(a,c)  = e2(b,c) .  In words, a and b are indistinguishable 
if player 2, no matter what he is playing, cannot distinguish between them. A similar 
definition holds for the actions of player 2. 

Notice that this definition does not use the particular structure of 51,l? 2 
specified in Section 2. In games with S-Tinformation,  for instance, two actions are 
indistinguishable if by playing each one of them the player cannot get a standard 
information no matter what the other player is doing. 

Recall that we denote by A(Z) the set of  all the probability distributions Q over 
12, i.e., for any (a, b) E ~, Qa, b >- 0 and Z(a, b) ~ ~Qa, b = 1. We will define a subset 
~,~ of  A(Z) as follows: 

= {Q E A(E) I 

(i) for every two indistinguishable actions a, a '  E E 1 

~bE]22 hl(a,b)Qa,b >- ~bE~] 2 hl(a',b)Qa,b; 

and 

(ii) for every two indistinguishable actions b, b '  E !2 2 

h2(a b')Qa,b}. EaCE1 h2(a,b)Qa, b >- ~aE~l , 
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In words, a probability distribution Q is in ~ if every action a E E 1 is a best 
response (versus the mixed action induced by Q given a) among all the actions a '  
that are indistinguishable from it, and a similar requirement for every b E E 2. 
Thus, any profitable "deviation" from Q is detectable. 

We will say that the information structure is completely trivialifthere is a player 
whose actions all are pairwise indistinguishable. 

b The Main Theorem 

In two player repeated games with a symmetric non-completely trivial S-T  informa- 
tion. 

UEP = UNIF = BEP L = h(~.~) ('1 IR for any Banach limit L, 

where IR is the set o f  all the individually rational payoffs. 

c Remarks 

(i) The case where the information is completely trivial is a private case of  semi- 
standard information, which was treated in ILl]. In that case, the equilibrium 
payoff set is the convex hull of all the Nash equilibrium payoffs of the one-shot 
game. 

(ii) The set ~,~ is convex and h is multilinear. Therefore h(G2) is also convex. 

5 Prev ious  Results  

a Characterization of Correlated Equilibrium Payoffs 

The set of all correlated equilibrium payoffs in general two player repeated games 
with imperfect monitoring was characterized in [L2]. A complete description of  this 
result requires representation of  notions which lie beyond the scope of  this paper. 
However, in the case of S-T  information, the indistinguishability notion suffices. 
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In games with S -T the  characterization of  the correlated equilibrium payoff set 
is (see [L21): 

UCEP = CEP L = h ( ~ )  M IR, for all Banach limits L. (5.1) 

This characterization suggests that the correlated equilibrium payoffs of the 
repeated game are only those individually rational payoffs associated with cor- 
related actions (Q) that are immunized against non-detectable and profitable devia- 
tions (i.e., Q E ~ ) .  Combining (5.1) with the main theorem we obtain: 

Corollary." In two player repeated games with a non-completely trivial and sym- 
metric S - T  information 

UEP = UCER 

In other words, symmetric S - T  repeated games are saturated. 

b Equilibrium Payoffs as Limits of  Payoffs in G n 

Denote by G n the n-fold repeated game of G. G n is described by two sets of actions, 
~ and E~, two payoff functions, h~ and h~, which are the average of all the stage 

payoffs, and two information functions, g~ and e~. 

We can treat G n as we treated G, and define the relation - on E n. Extending 
fn~ to A(Z n) we can extend - to mixed strategies as follows. Two mixed strategies, 

a and a '  in A(~n), are indistinguishable (a - a ' )  if for any r E A(Z~_ i ), f~-i (a,r) 

= e~_ i (a ' , r ) .  In words, a and a '  are indistinguishable if they yield the same 

distribution on L~_ i for any mixed strategy ~-. Define for any integer n and e _> 0 

the following sets 

Dn(1) = {(a,r) E A ( ~ )  • A ( ~ ) i h ~ ( a , T )  _> h ~ ( a ' , r ) -  e 

for all a '  - a} 

o n ( 2 )  = [(a,z) E A(Z~) • A(Z~)lh~(a,z ) > h ~ ( a , r ' ) - e  

for all r '  - r} 

(5.2a) 

(5.2b) 

Dn=e D~(1) (3 D~(2). (5.2c) 
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In words, D n i s  the set of all the pairs (GT) in which a player cannot gain by more 
than e if he plays a strategy indistinguishable from his prescribed one. 

Denote M = n e >  0 cl U n hn(Dn) ,  where cl is the closure operator and 
h n n n = (h l ,h2 ) .  The result in [L3] asserts that 

M N IR c_ F, for F = UEP, UNIE BEP L. (5.3) 

Moreover, M is convex. 

Obviously, UNIF, UEP c_ UCEP and BEP L c_c_ CEP L. Thus, in order to prove 
the main theorem it is sufficient, by (5.1) and (5.3), to show that h (~.~) N IR is in- 
cluded in the left side of (5.3). Thi~ will be done by showing that any payoff in h ( 2 )  
can be approximated by payoffs in h n (Dn  e) for some n and arbitrarily small e. 

6 The Case of Discrete Equivalence Classes 

Without restricting generality, 0 _< h i <_ 1, i = 1,2. For the main construction of 
the strategy we will need a sub-matrix of  the pattern ( I .). The existence of such 
a sub-matrix is ensured in cases of  non-completely trivial information where each 
player has at least two indistinguishable actions. If, however, at least one of the 
players has no two such actions, then the proof  of  the theorem is easy, as shown by 
the following proposition. 

Proposition 1: If  at least one player has no two indistinguishable actions, then 

UEP = UNIF = BEP L = h ( 3 )  N IR. 

Proof" Without loss of generality, player 1 is the one having no two indistinguishable 
actions. We claim first that 

Conv h(D~(2)) n I R c  F, F = UEP, UNIF, BEP L. (6.1) 

Since player 1 has no two indistinguishable actions (see (5.2a)), DI(1) = A(121) 

X A(E2). Thus, D01 = DI(1) n D01(2) = Dl(2) .  Notice tha tDl (2 )  _c D n for every 

n and e. Therefore, h (D 1 (2)) ~ M. Since Mis convex, Cony h (D01 (2)) c_ M. Hence, 

by (5.3) one obtains the desired inclusion. 
Second, we prove that 

h ( ~ )  _c Conv h(D01(2)). (6.2) 
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Let Q E 3 .  Denote by Qb the marginal distribution on ~2. For every b E ~ satis- 
fying Qb > O, Q induces a distribution, denoted Q(.  ]b), over E 1 in the following 

way. Q(alb ) = Qa,b/Qb . Notice that h(Q) E Conv{h(Q(.lb))lb C ~2 and 
Qb > 0}. Moreover, as Q E ~ ,  any pair (Q(. I b),b) satisfying Qb > 0 is an element 
of Dol(2). Hence, h(Q) E Conv h(Dl(2)). Therefore, (6.2) is obtained. 

The facts that UEP, UNIF ~ UCEE BEP L __C_ CEP L, (5.1), (6.1) and (6.2) com- 
plete the prood of  the proposition. / /  

It is left to discuss the case where both players have at least two indistinguishable 
actions. In other words, there are at least two rows and two columns without any 
asterisks. We will demonstrate the main idea of  the proof by an example. 

7 A n  I l l u s t r a t i o n  o f  t h e  P r o o f  b y  a n  E x a m p l e  

In this section all the main ideas and the terminology used in the next section are 
introduced. Consider the distribution Q: 

L M R 

1/5 

i / 5  

1/s 

2/5 

Fig. 1. 

over a 3 x 3 matrix. We assume that Q E 2 and that we are not in the situation 
of Proposition 1. Since the information is not completely trivial we can find a sub- 
matrix with the following pattern (* indicates standard information): 

A B 

I I I 
I I ! 
I I' t 
I I , I 
I I I B 

Fig. 2. 
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The objective is to define for a given e > 0 a joint strategy (an,7 n) in Gn, for 
n to be specified later. (an,7 n) will possess the following two properties: (i) 
hn(an,T n) is close to h(Q) and (ii) (an,r n) E D n . 

E 
(an,7 n) will consist of three phases: the correlation phase, the master phase, 

and the report phase. 

a The Correlation Phase  

Define the 4 x 4 matrix 4~ as follows: 

= 

Fig. 3. 

1 
I I 
I 
~o 
3 
I 
I 
11 

0 1 

1 0 

0 1 

1 1 

Let x = y = (1/4,1/4,1/4,1/4). 
In q~ there are 10 ones. Now define the matrix r by replacing each 1 in q~ by 1/10. 

We will consider r as a correlation matrix as follows. An entry in r is picked with 
the attached probability (i.e., either with probability 1/10 or with probability 0). If 
an entry in one of the left sub-matrices of r was chosen, player 2 plays M and other- 
wise R. Similarly, if an entry in one of  the top sub-matrices was chosen, player 1 
plays E and otherwise B. Notice that r and Q induce the same distribution over the 
original matrix. However, ~b has another nice property. r satisfies 

~/ij = C(~ Xi Yj ' a n d  ~ij  E {0,1], where  c > 0, 

which will be useful in the procedure that follows. 
The jointly controlled correlation (JCC) procedure is the following: before star- 

ting the game each player randomly picks a number from {1 ..... 4} with probability 
1/4 each (this corresponds to x,y). Suppose that player 1 picked k and player 2 pick- 
ed m. In the coming stages the players communicate, using the sub-matrix of  Figure 
2, as will be explained later. The goal of  the communication is to disclose enough 
information (about the pair (k ,m)) ,  so that in case 4X,m is 0, both players will 
know it. However, the procedure the players follow in order to disclose information 
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should be designed carefully. Should q~k, m = 1, a player would not be able to infer 
much data, from the information he obtains, about the identity of  the choice made 
by his opponent.  For instance, if player 1 picked 3 and player 2 picked 1 (k = 3 and 
m = 1), player 1 should be able to deduce that m is not 2 (because q53, 2 =- 0 and 
player 1 knows that he should have been informed of that, had m been equal to 2). 
But player 1 should not be able to infer anything beyond the fact that the choice of 
player 2 belongs to {1,3,4}. Knowing the probability according to which player 2 
picked a number, and after applying a Bayesian updating, player 1 ascribes a pro- 
bability of 1/3 to each one of the possibilities m = 1,3,4. 

How Players Communicate: Basically, players communicate by answering "Yes- 
No"  questions. As was noted before, the answers a player gets should not be too in- 
formative. The way by which it is accomplished is the following. A player always 
answers to the "Yes-No" question asked, but his opponent does not necessarily hear 
the answer. Both players answer simultaneously. Both hear the answer only if both 
answer "Yes", and both hear nothing if one of  them answers "No".  Since a sub- 
matrix of  the form of  the one in Figure 2 exists, this pattern of  communication is 
plausible. Notice that if a player plays A for "N o "  and B for "Yes", the outcome 
is an asterisk only if both answers were "Yes". Obviously, if a player played B and 
did not get an asterisk he deduces that his opponent 's  answer was "No".  However, 
if a player played A he can infer nothing about the previous move of the other player. 

Now we are ready to describe the procedure in detail. For any 0 entry of 4~ attach 
a stage (there are 6 such entries). Enumerate these entries by 1 ..... 6. At stage 1, using 
the sub-matrix of Figure 2, the players check whether the entry 1, say, (il ,Jl),  was 
chosen. Player 1 plays B if he picked i 1 and A otherwise, and player 2 plays B if he 
pickedj  1 and A otherwise. In other words, player 1 answers the question "Did you 
pick i 1 ? ' '  and player 2 answers the question "Did you pick j 1 ?' '  If the answer is af- 
firmative a player should play B and, otherwise, A. If the signal a player got in the 
first stage is * (standard), then he knows that ( k ,m)  = ( i l , J l ) .  In particular, 
4~k,m = 0, which is considered a failure of the procedure. Thus, it should start all 
over from the beginning. However, if the signal of  the player at stage l is trivial, they 
proceed to stage 2 in which they eliminate the possibility of (k ,  m) = (i2,J2). That 
is, player 1 answers (by playing B for "Yes" andA for " N o " ) t h e  question "Did you 
pick i2?" and player 2 answers the question "Did you pick j 2 ?"  If  the signal is * 
then it is a failure and the JCC should start over (this will be called later an unsuc- 
cessful round Of the JCC). Otherwise, the third stage is devoted to the elimination 
of ( k , m)  = (i3,J3), and so forth. 

Suppose that the six first stages passed without any asterisk having been observ- 
ed. This means that 4~k, m :~ 0, which is considered a success of  the procedure, and 
the JCC is completed. 

In a case where a failure occurs, the players should ignore the previous outcomes 
and independently pick once again a number from {1,2,3,4} at random. Then they 
should proceed by answering "Yes-No" questions regarding their choices and con- 
tinue that way until the first success. In later referrals we call the last part of the JCC 
(in which six consecutive stages have been passed without any asterisk) the suc- 
cessful round of  the JCC. 
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Notice that if both players adhere to the JCC, the procedure terminates with 
probability 1. Moreover, the successful round of the JCC induces the same distribu- 
tion as ~b. For instance, if player 1 picked 3, he knows only that player 2 picked with 
probability 1/3 any of the columns l, 3 or 4. 

The correlation phase by itself is manipulable. A player can deviate from the 
prescribed procedure in two ways. He can choose one of [1,2,3,4] with a different 
distribution than (1/4,1/4,1/4,1/4), or he can report on one choice while he actually 
chose another. The report phase is aimed at preventing such deviations. 

Let t e be the earliest time before which the JCC terminates with probability of 
at least 1 - e/3. 

b The Master Phase 

At the moment the correlation phase is finished, the master phase starts. Here, each 
player plays the action determined by the correlation phase for a long period of time- 
namely, for at least 3t~/e stages. Player 1 plays E for an outcome (i.e., if player 1 
picked at the successful round of the JCC a number corresponding to a column) in 
one of the top sub-matrices of q~, and plays B otherwise; player 2 plays Mfor  an out- 
come in one of the left sub-matrices, and R otherwise. 

Remark." After finishing the JCC, the players play according to the correlation 
matrix. Assume, for instance, that player 1 plays a. After playing one time according 
to the correlation matrix, the posterior probabilities that player 1 has about player 
2's actions might be changed. As a result, some deviations of player 1 may become 
profitable. However, the posterior probabilities might be altered only if by playing 
a, there is a positive probability (according to the correlation matrix) for at least one 
*. Therefore, there is no other action that is indistinguishable from a, which means 
that player 1 cannot deviate to another action without changing the probabilities 
of player 2's signals. Thus, there is no new undetectable and profitable deviation. 

Notice that we are relying here on the symmetry assumption: if one player gets 
* the other one also gets it. Otherwise, it might be that the action a is a best response 
(among a l l . . . )  a priori but not a posteriori. In particular, this means that there is 
a positive probability for player 1 to get an asterisk while playing a, and that this 
signal is invisible to player 2. 

All of these attest to the fact that the particular structure of symmetric S-T in- 
formation is needed, not merely for the existence of a submatrix of Figure 2, which 
enables the correlation phase to take place: this specific information structure is 
used also in the design of the master plan. In the latter, the players play over and 
over again according to the same correlation and, due to the symmetric S-Tinfor- 
marion, without impairing its effectiveness (i.e., the correlation remains incentive 
compatible). 
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At this phase the players check each other to see if somebody has deviated in the 
correlation phase. Player 1 (resp. 2) has to report the row (resp. column) he picked 
in the successful round of the JCC (recall that we define a joint strategy in G n, 
where n is still to be specified). 

Reports of  that kind were introduced in [ L2] and [ L3]. The way to report on 
a row or a column is to encode it by a string of A's and B's, and to play in the sub- 
matrix of  Figure 2 accordingly. That  is, at the first part  of  the report phase, player 
1 plays B, and player 2 plays either A or B depending on the string encoding the 
column he wants to report on (as the one picked by him at the successful round of 
the JCC). In the second part  of  the report phase the roles of  the players are exchang- 
ed. Player 2 plays B and player 1 plays either A or B so as to report his chosen row. 
That  completes the description of  the joint strategy denoted by (an,r n). 

We would like to show roughly why (an,r n) possesses the desired properties. 
Notice that the length of  the report phase is 21og24 = 4. (2 for two players, 4 for 
four rows and columns in ~.) Set n = te + [3te/e] + 4. I f  both players do not deviate 
then the JCC terminates with probability of  at least 1 - e/3 before t e. Thus, with 
probability of  at least 1 - e/3 the expected payoff  at any stage of  the master phase 
is h(Q). Recalling that 0 < h i < 1, we obtain Ithn(an,r n) - h(Q)ll-- e/3 + 
(t e +4) /n  _< e. To convince the reader that (an,r n) E Denwe should show that there 
is no way to deviate in the correlation phase without affecting the distribution of  
the signals. 

To see it, let us return to the example. Player 1, for instance, can cheat in the 
correlation phase. He can pick the third row and report as if he picked the second 
one. For example, at the stage the players are supposed to check whether the entry 
(2,1) (namely, the second row and the first column) was chosen, player 1 plays B and 
reports as if he chose 2, even though he chose the third row. Similarly, player 1 can 
pick row 2 - in the stage the players are supposed to check if the entry (2,1) was pick- 
ed - play A, as if  he did not choose 2. By this particular method of  cheating, player 
1 shifts weight from one entry to another and causes the induced distribution to be 

,,p, = 

1 / lO  

1 / lO  

0 1/10 0 

1/10 o 1/10 

o i / 1 o  z /1o  

1 / lO  1 / ! o  1 / l o  

4 I owe the idea presented here to S. Sorin. 
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rather than the original one. However, this kind of cheating can be detected at the 
report phase with a positive probability. 

At the report phase, player 1, after picking the second row in the correlation 
phase, should choose to report either on row 2 or row 3. If  he reports row 2 there 
is a positive probability that player 2 picked 1 and the corresponding entry was not 
eliminated (because the JCC terminated without any *). That is, in the correspon- 
ding stage to (2,1) he, player 2, did not get the signal that he was supposed to get, 
an *. At that moment, player 2 knows that player 1 cheated. If, on the other hand, 
player 1 reports 3, then player 2 can detect the cheating in case (which has positive 
probability) he chose the second column. This is so because, if the choice of player 
2 was the second column and the choice of player 1 was the second row, then the 
JCC terminates successfully (by r  (2,2) is not eliminated). However, in the report 
phase, player 1 reports that he chose the third column (at that moment he does not 
know whether player 2 picked 1, 2, or 4). Since 4~3,2 = 0 and the pair (3,2) should 
have been eliminated during the correlation phase, player 2 deduces that player 1 
cheated. 

8 The Proof  of the Theorem 

Since (i) UNIF c_ UEP _c UCEL (ii) BEP L c_ CEPL, and in view of (5.1), it is suffi- 
cient to show that h ( ~ )  M IR c_ UNIE BEP L. 

Let Q E ~ .  We will define here a joint strategy, (on,r n) in Gn, consisting of 
three phases, where n is to be specified later. (an,r n) is constructed in such a way 
that it yields a payoff (in Gn) close to the payoff corresponding to Q (this is proved 
in Proposition 2). Moreover, (~n,Tn) is immunized (up to the order of e) against 
undetectable deviations (see Proposition 3). Both propositions imply that h(Q) is 
included in the left side of (5.3), which concludes the proof. 

By Proposition 1 we can assume, without loss of generality, that each of the 
players has at least two indistinguishable actions. Thus, there exists a sub-matrix 
which has the pattern of the 2 x 2 matrix of Figure 2. We will refer to that sub-matrix 
as the communication matrix. 

Lete > 0. 

The Correlation Phase 

Constructing the auxiliary matrix 

We will take a matrix Q' with rational entries that satisfies 

I IQ-Q' I I  < ~/31~1 (8.1) 
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We can assume that all the entries have a common denominator. Thus, Q'  = 
(qij/c), where qij, c E IN, and E qij = e. Let p be the 1.c.d. of qij' , and Qij be a 

qij x qij matrix of l's. Define now for every pair ( i , j )  a matrix, P/j, with 0-1 entries 

as follows. If qij = 0, set Pij = 0. Otherwise, define 

P. , = 

13 

lqij 

Qij 

t I1 
I Q U II  
I I I  

where the sub-matrix Qij appears P/qij times in Pij �9 Now define the auxiliary 
matrix ~ by replacing the entry q i j / c  in Q'  by the matrix P/ j .  That is, (~ = (p/j).  

Notice that (~ has p] E 1 [ rows and p[ ~2 [ columns. 
Denote by ~ the normalized ~ (all the entries sum up to I). 

Example: Suppose that Q'  is the lower right sub-matrix of  Figure 1. p is equal to 
2 and 4) is the matrix of  Figure 3. 

The jointly controlled correlation (JCC) is a procedure in which a player picks with 
the same probability a row of  ~ (player 1) or a column of 4) (player 2), and eliminates 
the occurence of 4~-zero entry in the same manner that was described in Section 6. 

Precisely, let N(~) be the set of  all the zero entries of  ~. I.e., (u, v) E N((h) iff  
4~u,v = 0. Set n(q~) = ]N(4~) [, the number of  the zero entries in ~. Let/3 be a one- 
to-one map from N(4~) to {1 ..... n(4~)}. That is,/3 is an enumeration of all the zero en- 
tries of  4. Player 1 (resp. 2) should play B of the communication matrix at the stage 
r v) if he picked u (resp. v) and should play A otherwise. If a player, during one 
of  these stages, receives * the procedure starts over. That is, a player should pick, 
once again, a row or column independently of  the previous outcomes and should 
report on it. With probability 1 there will be a successful JCC in which no * was 
observed. 

In the sequel we will refer to 13(u, v) as the stage in which (u, v) is checked in 
order to be eliminated. Notice that if 4~(u, v) = 1, (u, v) is not eliminated. 

Denote by te the earliest time before which the JCC terminates with a probabili- 
ty of  at least 1 - e / 3 .  Le tn  = t~ + [3t~/e] + [ l o g p [ E l [ ]  + [ logp]Z2[ ] + 2. 



450 E. Lehrer 

The Master Phase 

The players should play in this phase according to the outcome of the previous 
phase. If player 1 picked in the successful JCC the row numberp(a  1 - 1) + b 1 with 
1 _< a 1 _< JEll and b 1 _< p, he should play constantly the action enumerated a 1. 
Similarly, if player 2 picked the column numberp  (a 2 - 1) + b 2 with 1 _< a 2 _< I E2 I 
and b 2 _< p, he should play constantly the action enumerated a 2. 

This phase lasts n - (the length of the correlation phase) - [log p I E 1 ] ] - [log 
P] Z21 ] - 2 stages. Notice that the length of  the correlation phase is a random 
variable. 

The Report Phase 

It is possible to encode a number of  rows and columns by strings, consisting of the 
letters A and B, of  length [logp [ E 1 [ ] + 1 and of length [logp I Z 2 [ ] + 1, respective- 
ly. Player 1, first, plays A or B of  the communication matrix according to the string 
encoding of the row picked in the successful JCC of the first phase. At the same time, 
player 2 plays B so as to receive the report from 1. 

Afterwards, player 2 reports his chosen column. He plays A or B of the com- 
munication matrix according to the string encoding his chosen column, while player 
1 plays B. 

Proposition 2." There is a constant r independent of  n, such that 

Ithn(an,r n) - h(Q)[I < cle. 

Proof." Observe that if both players adhere to the JCC, then each of  the nonzero en- 
tries of  0 is a plausible outcome of the procedure. Moreover, all these entries have 
the same probability of being the outcomes. Furthermore, if we identify (as is actual- 
ly done in the master phase) the rowsp(a  1 - 1) + b 1 with a 1 and the columns p ( a  2 
- 1) + b 2 with a2, (o induces the same probability distribution over E 1 x ~2 as Q' 
does. Thus, after t e stages with probability of  at least 1 - #3 ,  the players play a cor- 
related strategy distributed like Q' .  

Hence (recall (8.1)), 

Ilhn(an,Tn)-h(Q)][ ~ Ilhn(a'~,r~)-h(Q')EI + 

I lh(Q)-h(Q')[I  ~ (1-e/3)( t~ + [ logp[El [ ]  + [logp[1~2] ] + 2)/n + e/3 + 

Ilh(Q) - h(Q') t[  _< (1 - e/3)(e/3)c 1 + # 3  + e /3 l~ l  -< cae, 

for a certain constant c 1 . / /  
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Proposition 3: On,r n) e Dn2~, for a certain constant c 2, independent of n. 

Proof" First step. We first show that any deviation in the correlation phase is detec- 
table, i.e., any change in the way a player picks a row or a column of q~, as well as 
any change in the way a player reports on these, will change his opponent's signals 
distribution. We will show it for player 1 and a similar proof will work for player 2, 

A strategy ~n induces a distribution on the pure strategies. In particular, it in- 
duces a distribution on plays in the first round of the JCC. Assume that ~n is 
indistinguishable from an. We will show that ~n induces with r n the distribution 
given by Q' ,  by constructing a matrix % a function o~, and a probability distribution 
q over the rows of % 

Aplay consists of: (i) the instruction of what action to take at any stage of the 
first round of  the JCC, and (ii) the report to be delivered in the report phase. 
However, we assumed that 8n _ an and thus any action to be taken (in the first 
round of the JCC) according to ~n is either indistinguishable from A or from B. 
Thus, a play actually indicates whether to play A (or something equivalent, to which 
we refer as A) or B in each stage. In other words, it specifies whether to report "I  
picked u" or "I  did not pick u" in the stage/3(u, v), where the possible occurrence 
of (u, v) is checked. We denote the set of plays by K and a generic play by k. 

Each of those plays will stand for one row of y. The matrix 7 will have P t E2 I 
columns: one for each column of 4~. 7(k, v) will be defined as u if according to the 
play k, player 1 reports "I  picked u" in ~ (u, v). It should be noted that if according 
to k player 1 reports successively "I picked u" and "I  picked u ' "  in the respective 
stages B (u, v) and/5 (u ' ,  v), the choice of y (k,  v) should be the first to be reported. 
The second one will not be Observed. y(k ,  v) = 0 if in the play k player 1 reports 
at the stage B(u,v), "I  did not pick u" for all u or if (u, v) is not checked at all. 

Player 1 should report, in the report phase, which row from ~b he picked. We 
denote the corresponding report of k by c~(k). I.e., c~(k) is a row of 4. Finally, q 
is the distribution on the plays induced by ~n. Thus, we have compressed the 
instruction of the strategy ~n into 7, c~ and q. The instructions for how to play in the 
first round of the JCC are summarized by y, and those for how to report in the report 
phase are summarized by ~. q is the probability distribution according to which a 
specific play is chosen (if the strategy ~n is followed). Notice that two different plays 
may appear similar in the matrix 7. In these cases they differ by their respective 
reports specified by o~. 

The forthcoming proof makes use of the following lemma which states that if 
~n and o n are indistinguishable, then both induce (together with r n) the same cor- 
relation matrix. 
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L e m m a  1: Let y be a matrix with ]K I rows andpl  ~21 columns, where 3,(k,  v) is an 
integer between 0 andpl  E 11 for all k, v. Suppose, furthermore, that there is a func- 
tion c~ from K t o  {I ..... P l ~11 } identifying a row in 3/with on in q~, and a probability 
distribution, say, q, assigning a positive probability to any row of  7. Assume: 

(1) i f 0 ( u , v )  = 0 a n d e s ( k )  = u, t h e n q , ( k , v )  --/: O, 
(2) for every u,v ,  q {k ;  y ( k , v )  = u} is equal to 1/pl~al i f 4 ( u , v )  = 0 and 

0 otherwise, 
(3) q{k;c~(k) = U o , y ( k , v  ) = O } / q [ k ; y ( k , v )  = 0} = 1/#{u;4)(u ,v)  = 1} 

for all v and u 0, satisfying q~ (Uo,V) = 1. 

Then 
(a) 
(b) 

q{k;c~(k)  = u} = 1/plEll for every u. 
I f  y ( k , v )  ~e 0 a n d  o~(k) = u, then q~(u,v) = 0. 

(b) can be rewritten as 
(b ' )  a ( k )  = u,  8 ( u , v )  = imply y ( k , v )  -= O. 

The proof  of the lemma is included in the Appendix. 
In order to apply the lemma, we have to confirm that % q and o~ defined above 

satisfy (1)-(3) of Lemma 1. The assumption that ~n _ an ensures that (1)-(3) are 
satisfied. Hypothesis (1) is satisfied because 4~(u, v) = 0 means that player 1 should 
report "I  picked u"  at/3(u, v). There is a positive probability of column v to be pick- 
ed by player 2. e~ (k)  = u means that player 1 reports "I picked u" at the report phase. 
However, this is inconsistent with 3' (k ,  v) = 0 in the following sense: in a case where 
player 1 plays according to k and player 2 had picked v, the JCC will terminate suc- 
cessfully (because y ( k ,  v) = 0 means that while playing according to k player 1 
reports at the stage/3(u, v), "I  did not pick u"  for every u). c~(k) = u means that 
player 1 reports, in the report phase, "I  picked u". Knowing his chosen column, v, 
player 2 knows that if, indeed, player 1 chose u, he, player 2, should have heard the 
report, "I  picked u" in the appropriate stage (because ~(u, v) = 0 means that the 
entry (u, v) should be eliminated). However, the actual report he heard was "I  did 
not pick u", which is inconsistent. Since inconsistent messages are assigned zero 
probability we conclude that if, indeed, ~(u, v) = 0 and o~ (k) = u then q/(k, v) can- 
not be zero. Hence (1) is satisfied. 

Hypothesis (2) is satisfied because q{k ;  y (k,  v) = u } is the probability that, in 
the checking stage of the entry (u, v) an * will be observed, given that player 2 picked 
v. It should be equal to the probability assigned by the original ( an ,m) .  That is, 
1/p I E 1 [ if 49(u, v) = 0 (i.e., the entry (u, v) is checked in order to be eliminated) 
and 0 if 4(u,  v) = 1 (i.e., (u, v) is not checked at all). 

Hypothesis (3) is satisfied because, given that the JCC passed all the checkings 
without any *, the probability of  getting a report "I  picked u" in the report phase 
(the left side of  (3)) should equal the probability assigned by the original strategies 
(an,r n) to the same event (i.e., the right side of (3)). 

We can now apply Lemma 1. Let us convince the reader that conclusions (a) and 
(b) o f the lemma mean that O n , r n ) induces the same correlation matrix as (a n, r n). 
I.e., both induce ~. For this purpose we identify with u all the plays, k,  for which 
c~(k) = u. Recall that there arep] E 1 ] rows in ~. 
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Part (a) states that the total probability of those plays, k,  identified with u, is 
1 ~ p i e  1 l, which is the probability of u (according to r Now fix k satisfying o~(k) 
= u. (b')  states that if 4(u ,  v) = 1 (i.e., (u, v) is not supposed to be eliminated), 
then, indeed, 3' (k,  v) = 0. Namely, player 1, playing according to k, reports "I  did 
not pick ~"  in all the stages/3~, v). Thus, (u, v) is not eliminated. Furthermore, 
by hypothesis (1), if an entry (u, v) should be eliminated, (i.e., 4 (u, v) = 0), then 
it is eliminated also with a n, because 7(k ,  v) r 0. From (b) and (1) we get that, 
given k satisfying c~ (k) = u, the distribution over the v's is the same as the distribu- 
tion over the v's induced by r given the row u. This allows us to identify every play 
k that satisfies c~(k) = u with u and to conclude that (~n, 'rn) induces the 
distribution r 

To recapitulate, (-6 n, r n ) and (a n, r n) induce the same correlation if the first trial 
of the JCC is successful (i.e., if the successful round of the JCC is the first one). The 
same argument applies also to successful rounds which are not the first one (i.e., 
those that follow one or a few unsuccessful rounds). Thus, a n, together with r n, 
induces the same correlation matrix as a n induces. Hence, we are in the context of 
the second step, where we assume that the correlation phase ends up with the cor- 
relation matrix Q' .  

S e c o n d  step." In view of the first step we may assume that the players follow the 
prescribed strategies in the correlation phase and, therefore, (~n,~-n) generate the 
distribution Q'  for use in the master phase. It remains to be proven that given this 
assumption no player can gain much by a nondetectable (indistinguishable) devia- 
tion. We will prove that player 1 cannot gain in the master plan by more than e/3 
by deviating to 8n which agrees with a n on the correlation phase. 

The notion of indistinguishable deviation in games with S - T  information 
means that at any stage and after any history the deviating strategy should assign 
to any equivalence class (induced by - )  the same probability assigned by the 
prescribed strategy. Recall that Q E ~( i .e . ,  any action assigned a positive probabili- 
ty by Q is a best response, within the equivalence class, to the expected action of the 
opponent). Since Q' is close to Q up to e/3 [El any action assigned a positive pro- 
bability by Q'  is an e/3 best response, within the equivalence class, to the expected 
action (according to Q')  of the opponent. For the sake of simplicity we divide the 
analysis into two cases. 

Case 1: During the master phase player 1 does not get any additional informa- 
tion. This means that player 1 cannot update his beliefs about the action of player 
2. Thus, player 1 expects player 2 to play the (mixed) action he (player 1) expected 
immediately after the correlation phase. However, his chosen action was then an e/3 
best response (within the equivalence class) and it remains so during the master 
phase. 

To recapitulate, in a case where no additional information is acquired during 
the master phase player 1 plays his e/3 best response (within the equivalence class). 
Since 8n _ an, by playing ~n player 1 cannot gain by more than e/3 in the master 
phase. 
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Case II: During the master phase player 1 gets additional information. The 
master phase consists of  repeating many times the action corresponding to the out- 
come of  the correlation phase. In games with S-Tinformat ion additional informa- 
tion can be acquired only by playing an action which is indistinguishable from any 
other action. I.e., an action, say, a C ~ 1, for which there is an action b E ~2 satis- 
fying t l (a ,  b) = (a,b). We call such an action an informative action. However, any 
deviation to informative action (in order to obtain additional information) or from 
informative action (in the case when the outcome of  the correlation phase cor- 
responds to such an action) is indistinguishable. Thus, any indistinguishable devia- 
tion may yield at most a profit of  #3 .  

In the second step we have shown that ~n does not increase the payoff of  player 
1 in the masterplan by more that e/3. However, it may increase his payoff in the other 
phases. But the total length of these phases is negligible compared to the length of 
the master plan. Thus, we conclude that 

(1 - e/3) t e + log p[ ~ 11 + log p[ ~21 + 2 
+ el3 h~ ('Sn'rn) <- h~ (an'm) + n 

<_ hl(an,rn ) + c2e, for some constant c2, 

which concludes the proof  of  Proposition 3. / /  
Propositions 2 and 3 imply that h(Q) E (3e> 0 cl Un~176 hn(Dne), which is, in 

view of  (5.3), what is needed to prove the main theorem. 
We conclude the paper by parenthetically noting that the correlation phase can 

be improved so as to hold not only for rational entries matrices but also for more 
general ones. However, for proving the main theorem, generating a rational correla- 
tion matrix (in the proof, Q') close enough to the matrix in question (Q) was suffi- 
cient. 

Appendix 

Proof of  Lemma 1: Denote for any row u of 0, ol-l(u) = {k E K;  a (k)  = u}. We 
will prove (a) first. 

Fix u 0. There are v's for which O(Uo, V) = 1. Fix such v. By (3) 

q{o~-l(u0)} _> q{k;o~(k) = u O, 7 (k , v )  = O} = 

1 - q { k ; 3 , ( k , v )  ~ O} 

# { u ; O ( u , v )  = 1} 

q[k;',/(k,v) = O] 

# { u ; O ( u , v )  = ~} 
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by (2) 

1 - ~ u : 4 ~ ( u , v ) = O  1/pI~ll - ~u:O(u,v)=l q { k ; ~ / ( k , v )  = u} 

#{u;4~(u,i~) = 1} 

and again  by (2) 

P l Z l [  - #{u;d~(u,v)  = 1} 
= [ 1 -  

plZll 
] / # [ u ; ( ~ ( u , v )  = 1} = 1 / P I Z l [  

Thus,  q{c~-l(u0)} > l /p [  E 1 ] for  every u 0 . Since there are p l  E 11 such u 0 , we ob- 
tain (a). 

We now proceed to the p roo f  o f  (b). Fix v, a co lumn in 0. Suppose  that  u 
satisfies r  v) = 0. By (1) we obtain  7 ( k ,  v) ~e 0 for every k satisfying o~(k) = 
u. Thus,  by (2), 

q { k ; a ( k )  = u,  . y ( k , v )  4: 0} = q{k;o~(k)  = u} = 1 / p l Z l t .  (A.1) 

The  last equal i ty holds because of  (a). 
F rom (A.1) we get, by taking a union over all u such that  r  = O, 

q{k; there  is u s.t. o~(k) = u,  O ( u , v )  = 0, and . , / (k ,v )  --/: 0} 

= # { u ; r  = 0}/p]r~l l ,  
(A.2) 

On the other  hand,  we obta in  by (2) tha t  

q { k ; q , ( k , v )  4: 0} = E u q { k ; 7 ( k , v  ) = u} 

= # { u ; r  = 0} /p lZa l .  
(A.3) 

Thus,  the probabil i t ies in the left side of  (A.2) and (A.3) coincide. Notice tha t  the 
event o f  the left side o f  (A.2) is def ined with the addi t ional  qual i f icat ion that  there 
is u s.t. o~(k) = u and 4~(u, v) = 0, while tha t  o f  (A.3) is def ined wi thout  it. Since 
bo th  probabili t ies:  the one with the addi t iona l  restriction and the one wi thout  it 
coincide, we conclude tha t  3 , ( k , v )  _-,e 0 implies that  there is u s.t. o~(k) = u and 
4~ (u,  v) = 0. Thus,  if  7 (k ,  v) 4 :0  and a (k )  = u,  it mus t  be tha t  q~ (u,  v) = 0, which 
concludes the proof .  / /  
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